
TransportTransport--Layer Security (TLS)Layer Security (TLS)

T-110.4206

2009-10-07

Tuomas Aura
Helsinki University of Technology

2

OutlineOutline

1. Network security protocols

2. Essential cryptography

3. Authenticated key exchange

4. Key exchange using RSA encryption

5. TLS/SSL

6. TLS handshake with RSA

7. TLS record protocol

8. Session reuse

9. Trust model

Network security protocolsNetwork security protocols

Typical goals for security protocols:
encryption and authentication of data

Typical protocol architecture:

1. Autheticated key exchange produces a session key

2. Session protocol uses the session key to protect data

Examples: SSL, TLS, IPsec, HIP, Kerberos, 3G AKA

Essential cryptographyEssential cryptography

4

5

EncryptionEncryption

Message encryption based on symmetric
cryptography

Endpoints share a secret key K

Protects confidentiality of data M

Encryption

E

Decryption

D

Ciphertext

EK(M)Plaintext

message M

Plaintext

message M

Key K

Insecure

networkSender Receiver

Key K

6

Message authentication code (MAC)Message authentication code (MAC)

Message authentication and integrity protection based
on symmetric cryptography

Endpoints share a secret key K

MAC appended to the original message M

Examples: HMAC-SHA1, AES CBC-MAC

MAC Compare

Authentic

Message M
Message M

Key K

Insecure

networkSender Receiver

M, MACK(M)

MAC Ok?

Key K

|| split

MACK(M)M

M

MACK(M)

7

PublicPublic--key encryptionkey encryption

Message encryption based on asymmetric crypto

Key pair: public key and private key

Example: RSA

Insecure

network

EB(M)
Encrypt

(asymm.)

Bob’s

public

Key PK

Decrypt

(asymm.)

Bob’s

private

Key PK
-1

Message

M

Message

M

Sender Receiver Bob

8

Digital signature (1)Digital signature (1)

Message authentication and integrity protection with
public-key crypto

Verifier has a public key PK ; signer has the private key PK-1

Messages are first hashed with a cryptographic hash function
and then signed
Examples: DSS, RSA + SHA-256

Hash

Original

Message M

Received

Message M’

Private

Key PK
-1

Insecure

networkSender A Receiver

Hash

Sign Verify

M, SignA(M)

Public

Key PK

Ok?

h(M) h(M)

|| split

SignA(M)

M

SignA(M)

Authenticated key Authenticated key
exchangeexchange

Basic goals for key exchangeBasic goals for key exchange

Create a good session key:

Secret i.e. known only to the intended participants

Fresh i.e. never used before

Authentication:

Mutual i.e. bidirectional authentication: each party knows
who it shares the key with

One-way i.e. unidirectional authentication: only one party
verifies who the other one is

Basic goals for key exchangeBasic goals for key exchange
Other good properties, mostly optional:

Protection of long-term secrets: long term secrets such as
private keys or shared master keys are not compromised even if
session keys are

Entity authentication: each participant know that the other is
online and participated in the protocol

Key confirmation: each participant knows that the other knows
the session key (implies entity authentication)

Forward and backward secrecy: compromise of all current
secrets does not compromise past session keys, and
compromise of past session keys does not compromise future
session keys (this terminology can used in conflicting ways)

Contributory: both parties contribute to the session key;
neither can decide the session-key value alone

Identity protection: passive observers (sometime also active
attackers) cannot learn names of the protocol participants

Key exchange using Key exchange using
RSA encryptionRSA encryption

13

Attempt at key exchange v.1Attempt at key exchange v.1

Public-key encryption of the session key:

A → B: A, PKA

B → A: B, EA(SK)

A,B = names or other identifiers

PKA = A’s public encryption key

SK = random session key

EA(…) = encryption with A’s public key

Anything wrong?

14

Man in the middle attackMan in the middle attack

The protocol again:

A → B: A, PKA

B → A: B, EA(SK)

Lack of authentication! Man-in-the-middle attack:

A → T(B): A, PKA // Attacker intercepts the message

T(A) → B: A, PKT // Attacker spoofs the message

B → T(A): B, ET(SK) // Attacker intercepts the message

T(B) → A: B, EA(SK) // Attacker spoofs the message

15

Attempt at key exchange v.2Attempt at key exchange v.2

Authenticated key exchange:

A → B: A,B, CertA

B → A: A,B, EA(SK), SB(A,B, EA(SK)), CertB

SK = random session key

CertA = certificate for A’s public encryption key

EA(…) = encryption with A’s public key

CertB = certificate for B’s public signature key

SB(…) = B’s signature

Typically implemented with RSA encryption and
signatures: the same public works for either

Man in the middle attack prevented.
Anything still wrong?

16

Replay of old session keysReplay of old session keys
The protocol again:
A → B: A,B, CertA

B → A: A,B, EA(SK), SB(A,B, EA(SK)), CertB

Replay attack! Session keys not fresh:
A → B: A,B, CertA

B → A: A,B, EA(SK), SB(A,B, EA(SK)), CertB // Sniff
... // Later
A → B: A,B, CertA

T(B) → A: A,B, EA(SK), SB(A,B, EA(SK)), CertB // Replay
Attacker tricks B into accepting the old session key
We usually assume the attacker may compromise old
session keys

17

Attempt at key exchange v.3Attempt at key exchange v.3

Authenticated key exchange with freshness:

A → B: A,B, NA, CertA

B → A: A,B,NA,NB,EA(KM), SB(A,B, NA,NB, EA(KM)), CertB

SK = h(KM|NA|NB)

KM = random key material

NA = random nonce generated by A

NB = random nonce generated by B

Anything still wrong?

18

Attempt at key exchange v.4Attempt at key exchange v.4
Authenticated key exchange with freshness and key confirmation:
A → B: A,B, NA, CertA

B → A: A,B, NA,NB, EA(KM), SB(A,B, NA,NB, EA(KM)), CertB

A → B: A,B, MACSK(A,B, “Done.”)
SK = h(KM|NA|NB)
KM = random key material generated by B
NA = random nonce generated by A
NB = random nonce generated by B
CertA = certificate for A’s public encryption key
EA(…) = encryption with A’s public key
CertB = certificate for B’s public signature key
SB(…) = B’s signature
MACSK(...) = message authentication code computed with session key
Typically implemented with RSA

TLS/SSLTLS/SSL

20

TLS/SSLTLS/SSL
Originally Secure Sockets Layer (SSLv3) by Netscape in
1995
Originally intended to facilitate web commerce:

Fast adoption because built into web browsers
Encrypt credit card numbers and passwords on the web

Early attitudes, especially in the IETF:
IPSec will eventually replace SSL
SSL is bad because it slows the adoption of IPSec

Now the dominant encryption standard
Standardized as Transport-Layer Security (TLSv1) by IETF
RFC2246

Minimal changes to SSLv3 implementations but not
interoperable
Latest version TLS 1.2, RFC 5246

21

TLS/SSL architecture (1)TLS/SSL architecture (1)
Encryption and authentication layer added to the
protocol stack between TCP and applications

End-to-end security between client and server,
usually web browser and server.

Applications use a new TLS API instead of the normal
TCP socket API

TCP

IP

Application

TCP

IP

Application

InternetInternet

TCP

IP

Application

TLS

TCP

IP

Application

TLS

22

TLS/SSL architecture (2)TLS/SSL architecture (2)
TLS Handshake Protocol — authenticated key exchange

TLS Record Protocol — session protocol for protecting data

Small sub-protocols: Alert (error messages) and Change Cipher Spec

TLS

Record

Protocol

TCP

IP

TLS

Handshake

Protocol

Application data (e.g. HTTP)

General architecture of security protocols:
authenticated key exchange + session protocol

Cryptography in TLSCryptography in TLS
Many key-exchange mechanisms and algorithm suites defined
Most widely deployed cipher suite, default in TLS 1.1:
TLS_RSA_WITH_3DES_EDE_CBC_SHA

RSA = handshake: RSA-based key exchange
Key-exchange uses its own MAC composed of SHA-1 and MD5
3DES_EDE_CBC = data encryption with 3DES block cipher in EDE mode
and CBC
SHA = data authentication with HMAC-SHA-1

Default cipher suite in TLS 1.0, rarely used in practice:
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA

DHE_DSS = handshake: ephemeral Diffie-Hellman key exchange
authenticated with DSS signatures *

Examples of other cipher suites:
TLS_NULL_WITH_NULL_NULL
TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA
TLS_DHE_DSS_WITH_AES_256_CBC_SHA [RFC3269]

http://www.itl.nist.gov/fipspubs/fip186.htm

TLS handshakeTLS handshake

24

25

TLS handshake protocolTLS handshake protocol

Runs on top of TLS record protocol

Negotiates protocol version and cipher suite (i.e.
cryptographic algorithms)

Protocol versions: 3.0 = SSLv3, 3.1 = TLSv1

Cipher suite e.g. DHE_RSA_WITH_3DES_EDE_CBC_SHA

Performs authenticated key exchange

Often only server authenticated
(one-way i.e. unilateral authentication)

Client Server
ClientHello

ServerHello
Certificate*

ServerKeyExchange*
CertificateRequest*

ServerHelloDone
Certificate*
ClientKeyExchange
CertificateVerify*
ChangeCipherSpec
Finished

ChangeCipherSpec
Finished

Application data Application data
26

TLS TLS Handshake (RSA) Handshake (RSA)

Optional, client typically

unauthenticated

Encrypted

key

material

Encrypted

and

MAC’ed

session

data

1. Negotiation

2. Authentication

3. Key exchange

4. Start session
Protocol

version,

server

nonce,

cipher suite

Protocol

versions,

client

nonce,

cipher

suites

Server

certificate

27

TLS handshakeTLS handshake
1. C → S: ClientHello

2. S → C: ServerHello,
Certificate,
[ServerKeyExchange],
[CertificateRequest],
ServerHelloDone

3. C → S: [Certificate],
ClientKeyExchange,
[CertificateVerify],
ChangeCipherSpec,
Finished

4. S → C: ChangeCipherSpec,
Finished

[Brackets] indicate optional fields

28

TLS_RSA handshakeTLS_RSA handshake
1. C → S: Versions, NC , SessionId, CipherSuites

2. S → C: Version, NS , SessionId, CipherSuite
CertChainS

[Accepted root CAs]

3. C → S: [CertChainC]
ES(pre_master_secret),
[SignC(all previous messages including NC, NS, ES(…))]
ChangeCipherSpec
MACSK (“client finished”, all previous messages)

4. S → C: ChangeCipherSpec
MACSK("server finished“, all previous messages)

ES = RSA encryption (PKCS #1 v1.5) with S’s public key from CertChainS

pre_master_secret = random number chosen by C

master_secret SK = h(pre_master_secret, “master secret”, NC, NS)

Finished messages are already protected by the new session keys

1. Negotiation
2. RSA
3. Nonces
4. Signature
5. Certificates
6. Key confirmation and
negotiation integrity check

29

TLS_RSA handshakeTLS_RSA handshake
1. C → S: Versions, NC , SessionId, CipherSuites

2. S → C: Version, NS , SessionId, CipherSuite
CertChainS

[Accepted root CAs]

3. C → S: [CertChainC]
ES(pre_master_secret),
[SignC(all previous messages including NC, NS, ES(…))]
ChangeCipherSpec
MACSK (“client finished”, all previous messages)

4. S → C: ChangeCipherSpec
MACSK("server finished“, all previous messages)

ES = RSA encryption (PKCS #1 v1.5) with S’s public key from CertChainS

pre_master_secret = random number chosen by C

master_secret SK = h(pre_master_secret, “master secret”, NC, NS)

Finished messages are already protected by the new session keys

Secret session key?
Fresh session key?
Mutual authentication?
Protection of long
Forward and
Entity authentication?
Key confirmation?
Contributory
Identity protection?

Secret session key?
Fresh session key?
Mutual authentication?
Protection of long-term secrets?
Forward and vackward secrecy?
Entity authentication?
Key confirmation?
Contributory?
Identity protection?

30

Nonces in TLSNonces in TLS

Nonces NC, NS (client and server random)

Concatenation of a real-time clock value and
random number:

struct {

uint32 gmt_unix_time;

opaque random_bytes[28];

} Random;

TLS record protocolTLS record protocol

32

TLS record TLS record pprotocolrotocol

To write (sending):
1. Take arbitrary-length data blocks from upper layer

2. Fragment to blocks of ≤ 4096 bytes

3. Compress the data (optional)

4. Append a message authentication code MAC computed
with the session key

5. Encrypt with session key

6. Add fragment header (sequence number, type, length)

7. Transmit over TCP server port 443 (https)

To read (receiving):
Receive, decrypt, verify MAC, decompress, defragment,
deliver to upper layer

33

TLS record protocol TLS record protocol -- abstractionabstraction

Abstract view:
EK1 (seq. number, type, length, data,

HMACK2(seq. number, type, length, data))

Different encryption and MAC keys in each direction

All keys and initialization vectors are derived from the
master_secret

TLS record protocol uses 64-bit sequence numbers
starting from zero for each connection

TLS works over TCP, which is reliable and preserves order.
Thus, sequence numbers must be received in exact order

Session reuseSession reuse

34

35

Session vs. connectionSession vs. connection

TLS works over TCP

TLS session not bound to
IP address or TCP
connection; session can
span multiple TCP
connections

TCP connection breaks
when the client moves
and its IP address
changes, but TLS session
may survive

TLS

Record

Protocol

TCP

IP

TLS

Handshake

Protocol

Application data (e.g. HTTP)

36

Session reuseSession reuse

TLS session can span multiple connections
Client and server cache the session state and master_secret

Client sends the SessionId of a cached session in Client Hello; zero if
no session

Server responds with the same SessionId if found in cache; otherwise
with a fresh value

New master_secret calculated with new nonces for each
connection

Change of IP address does not invalidate cached sessions

Try which servers support TLS/SSL session reuse: connect to
a server with HTTPS, enter your password, log in using
password, move to a different IP segment, connect to the
same server again; do you need to re-enter the password?

Cookies are another way to manage sessions; delete cookies before
reconnecting

Trust modelTrust model

37

38

Typical TLS Trust ModelTypical TLS Trust Model

Trust root: web browsers and operating systems come
with a pre-configured list of root CAs (e.g. Verisign)

Which root CAs does your browser accept?

How do you know the list is not fake?

Root-CA public keys are stored in self-signed certificates

Not really a certificate; just a way of storing the CA public key

Users usually do not have client certificates

Businesses pay a top-level CA to issue a server certificate. Client
users do not want to pay

Typically, password authentication of the user over server-
authenticated TLS (HTTP basic access authentication, or
password entered into a web form and POSTed to the server)

39

TLS Certificate ExampleTLS Certificate Example

Example of a TLS certificate chain:
Nationwide (a building society in the UK)

Issuer: VeriSign Class 3 Public Primary CA

Subject: VeriSign Class 3 Public Primary CA

Self-signed certificate in the

list of trusted root CAs in the

browser

Certificate chain

received in TLS

handshake

Issuer: VeriSign Class 3 Public Primary CA

Subject: CPS Incorp/VeriSign

Issuer: CPS Incorp/VeriSign

Subject: olb2.nationet.com

But how do I know that olb2.nationet.com is the
Nationwide online banking site?

40

Trust chainTrust chain

Root CA self-signed certificate (trust root)

 Certificate chain with possible sub-CAs

 The server certificate (final certificate in the chain)
binds server name to server public key

Name in the certificate must match the server name in
the browser address bar or TLS API call

 Server public key public key is used in the
authenticated key exchange to authenticate server

 Session key

 Encryption and authentication of data with the
session protocol

41

TLS ApplicationsTLS Applications

Originally designed for web browsing

New applications:

Any TCP connection can be protected with TLS

The SOAP remote procedure call (SOAP RPC) protocol
uses HTTP as its transport protocol. Thus, SOAP can
be protected with TLS

TLS-based VPNs

EAP-TLS authentication and key exchange in wireless
LANs and elsewhere

The web-browser trust model is often not
suitable for the new applications!

